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Trajectories of charged particles in the static Ernst space-time 
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Abstract. We study the trajectories of charged particles in Ernst’s space-time representing 
a static black hole immersed in a magnetic field. We find bound orbits always exist for 
realistic magnetic field strengths. A similar investigation is carried out for the case of 
Melvin’s magnetic universe and for a corresponding test field superposed on a flat 
space-time. 

1. Introduction 

There has been considerable interest in the study of electromagnetic fields and motion 
of charged particles in curved space-times. Several authors, too numerous to mention 
here, have considered this problem. In this paper we shall study the motion of charged 
particles in Ernst’s static space-time (Ernst 1976), which represents a Schwarschild 
black hole immersed in an axially symmetric magnetic field which becomes uniform 
asymptotically if IBm I << 1. 

A situation like this (a black hole embedded in an external magnetic field) may occur 
in the realm of astrophysics. Our calculations would be of relevance if the magnetic 
field is sufficiently strong. 

In the next section, we given Ernst’s metric and work out trajectories of particles 
using the Hamilton-Jacobi equation (Carter 1968). Melvin’s magnetic universe 
(Melvin 1964) is also studied in a similar fashion. Finally, in § 3, we discuss the energy 
curves together with lines of constant potential and magnetic field lines for Ernst’s 
space-time. The energy curves for Melvin’s universe are compared with those for a 
corresponding test field superposed on a flat background. 

2. Ernst’s metric and trajectories 

Ernst’s metric is given by 

ds2=A2[(1 -2mrY1)-’ d r 2 + r 2  d02-(1 -2mr-’) dt2]+(r2sin28/A2) d 4 2  

A = 1 + B2r2 sin2@ 

0 5 A,q‘ = Br2 sin28/A 
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where Q, is the electric potential with respect to the angular Killing vector 7' ( d 4 ) ,  A,  is 
the four-potential and B is the constant value of the magnetic field on the axis. AS usual 
we have set G = c = 1. 

The metric (1) reduces to Schwarzschild's metric for A = 1, to Melvin's magnetic 
universe (Melvin 1964) for m = 0 and to the test field superposed on flat space-time for 
A = 1 (only in (1)) and m = 0. 

It should be kept in mind that the electric and magnetic potentials with respect to a 
Killing vector 5 are defined by 

V I @ E =  Fij5' V I &  = *F,,(' (4) 

respectively. F,, is the electromagnetic field tensor and *F,, is its conjugate. So one finds 
that the electric potential for the d t  Killing vector vanishes and the magnetic one is 
given by 

QM = 2B cos e ( r  - 2 m ) .  ( 5 )  

The magnetic field lines will be orthogonal to the constant lines and hence their 

(6) 

equation reads 

r sin 0 = constant. 

Following Carter (1968), we write the Hamilton-Jacobi equation 

s =-=L 11 zg ( S , ,  - e A , ) ( S , ,  - e A , )  
a7 

(7) 
d S  

,T 

for a particle of mass ,LL and charge e as 

-k2  = A- ' (1  -2mr-')(S, ,)2+A-2r-2(S, ,)2 

+ A 2 r - 2  sin-2t9(S,b -eCD)2-A-2(1 -2mr- ' ) - ' (S  (8) 

One can readily write the energy and the axial angular momentum of the particle as 

- S , r = - p l = ~  = A 2 ( 1 - 2 m r - ' ) f  (9) 

s,+ = p b  + e @ =  I = r2  sin2@& +ea. (10) 

Here and in what follows an overhead dot denotes differentiation with respect to the 
proper time 7. The Hamilton-Jacobi equation is unfortunately not separable in this 
case. However, we can write the Jacobi action in the form 

s = S(r,  e )  + 14 - st -$p2.r. (11) 

We see from symmetry considerations that motion confined to the equatorial plane 
exists and so we consider such motion by setting 0 = &r and = 0 in (8), which now 
becomes separable. 

Now S(r,  e) = S ( r )  and is given by 

The effective potential R is positive for r > 2 m  and, as is evident from physical 
considerations, no particle can escape to infinity. 
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Since partial derivatives of the Jacobi action S with respect to the constants of 
motion, 1, E and p, are themselves constants, the trajectories can be written in terms of 
quadratures. We give below one such integral corresponding to the differentiation with 
respect to I :  

If we put m = O  in ( l ) ,  it represents Melvin’s magnetic universe. By a simple 
transformation, the metric can be written in the form 

ds2=h2(dp2+dZ2-d f2 )+p2K2 d#12 ( 1 9  

where 

A = 1+B2p2 @ = B ~ ~ / A .  

Now the Hamilton-Jacobi equation reads 

- p 2 = A - 2 [ ( S p ) 2 + 5 2 - ~ 2 ] + ( A 2 / p 2 ) ( 1 - e ~ ) 2  

which is already separated. The Jacobi action is given by 
s=- ’  2p 2 T - E t f h # J + ~ Z f S ( p )  

where 

S ( p )  = ( e 2  - R)”’ dp, (19) 

implying 

E’ 3 R = A 2 p 2 + + * +  ( A 4 / p 2 ) ( 1  - e@)2  > 0.  

Here 5 is the momentum along the z axis and R is the effective potential. As shown 
above, one can readily write the quadratures giving the trajectories. 

3. Discussion 

In the first four figures, we have plotted the effective potential R against r. We have set 
p = 1 throughout and, in addition, m = 1 for Ernst’s field. All these plots and the other 
two diagrams of the orbits refer to the motion in the equatorial plane. 

Figure 1 shows the effective potential curves for different values of I with fixed 
values of e and B. The Melvin universe (full curves) is compared with the test field 
(which is obtained by setting A = 1 in the metric (15) and retaining @ as in (16)) 
superposed on the flat space-time. The potential wells are narrower, meaning smaller 
regions for allowable motion, for the Melvin field than for the test field. The distinction 
between the two fields becomes quite marked for large values of 1 and/or r. In figure 2 
the two fields are compared for varying field strengths with fixed e and 1. The distinction 
is inappreciable for B < 0.05 and starts increasing for large B. These two figures 
demonstrate the difference between geometrised (Melvin) and ungeometrised (test 
field) magnetic fields. 

Figures 3 and 4 refer to potential curves in Ernst’s field. In the former, I is varied 
while the latter is for varying B. We notice that, for I < 5, there are no potential wells, 
implying capture of particles by the black hole. The well starts developing for I a 5 and 
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R 

Figure 1. The equivalent potential curves for the Melvin universe (full curves) are compared 
with those for the test field (broken curves) ( p  = 1) for fixed B = 0.1, e = 1 and various 
values of I (labels on curves). 

R 

I ’  

Figure 2. As figure 1, but with fixed I = 5, e = 1 and various values of B. 
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Figure 3. Ernst’s field (m = 1, p = 1) for fixed B = 0.1, e = 1 and various values of 1. 

Figure 4. As figure 3, but with fixed I = 40, e = 1 and various values of B. 
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it goes on deepening and narrowing as 1 increases. Looking at the deepest points of the 
wells, we see that stable orbits could exist below 6 m. This means that the magnetic field 
pulls in the stability threshold of orbits. Figure 4 shows that bound orbits could exist for 
B 4 0.101 (equality refers to marginally bound orbits); for B larger than this, the 
particles will eventually be sucked in. These small values of B also correspond to the 
condition JBm I << 1 under which space-time becomes approximately flat asymptotically 
and the magnetic field B uniform. 

Figures 5 and 6 show two orbits. The former is a bound orbit where the particle‘s 
energy is appropriately chosen while the latter is a capture orbit where the energy is 
chosen so that it just skids over the well. 

Figure 7 displays the cross section of the constant potential-@,M-lines (full curves) 
and the field lines (vertical broken lines) near the black hole. Though these lines do not 

I 

Figure 5. A bound orbit in the Ernst field, with parameters I = 6 ,  B = 0.1, e = 1 and 
E’ = 1.881. The broken circles mark the outer and inner boundaries of the orbit. 

Figure 6. A capture orbit in the Ernst field, with parameters I = 6, B = 0.1, e = 1 and 
E’ = 1.9. The broken circles indicate the outer boundary and the black hole. 
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Figure 7. A quarter cross section of the constant potential lines (full curves) and the 
magnetic field lines (broken vertical lines) in the Ernst field. 

appear to be orthogonal, they are in fact so, as can be verified from equations (5) and (6). 
It is interesting to note that the field lines remain unaffected by the introduction of a 
black hole in the Melvin universe. 

Finally we comment on the order of magnitude of the magnetic field that determines 
the nature of the orbits. The conversion from dimensionless units to gauss is given by 

c 4  
BG = 7 B  2 (2.36 X l O I 9  ( M , / M ) B )  G. 

G M  

We recall that for 1 = 40, the upper threshold for the existence of bound orbits is given 
by B = 0.1. This value does not change appreciably for lower values of 1. When 
converted to gauss, this limit corresponds to a rather high magnetic field, even in the 
case of supermassive black holes that are envisaged to be present in galactic nuclei, i.e. 
B = 0- 1 corresponds to BG - 10" G for M - 10' M3.  Therefore, bound orbits must 
exist for any realistic magnetic field. Thus a black hole immersed in such a field would 
be surrounded by a cloud of charged particles in bound orbits, though sufficiently 
energetic ones are sucked into the black hole. 
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